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A flyer plate experiment involves forcing a plane shock wave through stationary test samples of material and
measuring the free surface velocity of the target as a function of time. These experiments are conducted
to learn about the behavior of materials subjected to high strain rate environments. Computer simulations
of flyer plate experiments are conducted with a two-dimensional hydrodynamic code developed under the
Advanced Strategic Computing (ASC) program at Los Alamos National Laboratory. This code incorporates
physical models that contain parameters having uncertain values. The objectives of the analyses presented in
this paper are to assess the sensitivity of free surface velocity to variations in the uncertain inputs, to constrain
the values of these inputs to be consistent with experiment, and to predict free surface velocity based on
the constrained inputs. We implement a Bayesian approach that combines detailed physics simulations with
experimental data for the desired statistical inference (Kennedy and O’Hagan, 2001; Higdon et al., 2004).

The approach given here allows for:

� uncertainty regarding model inputs (i.e. calibration);

� accounting for uncertainty due to limitations on the number of simulations that can be carried out;

� discrepancy between the simulation code and the actual physical system;

� and uncertainty in the observation process that yields the actual field data on the true physical system.

The resulting analysis accomplishes the objectives within a unified framework.

Keywords: flyer plate experiments; calibration; computer experiments; predictability; uncertainty quantifi-

cation; Gaussian process; model validation; sensitivity analysis; predictive science

1 Introduction

A flyer plate experiment involves forcing a plane shock wave through stationary test samples of ma-
terial and measuring the free surface velocity of the target as a function of time. These experiments
are conducted to learn about the behavior of materials subjected to high strain-rate environments
relevant to integrated hydrodynamic calculations of implosions driven by high explosives. Figure 1
is an example of an experimental facility capable of producing impactor plate velocities of 3.5 to 6.5
km/s (Trunin, 1998). In this setup, velocity is measured using pin detectors coated with insulating
enamel. These detectors are comprised of oppositely charged electrodes that come in contact as



the shock front passes through, sending a signal that is recorded by a measuring device. Modern
experiments measure free surface velocity using Velocity Interferometer System for Any Reflector
(VISAR) technology.

Figure 1: Diagram of flyer plate experiment with an accelerated aluminum impactor: (1) lens-shaped high-
explosive charge; (2) correcting lens; (3) main charge; (4) impactor plate; (5) shield from a standard material;
(6) tested sample; (7) shorting-pin detectors; (8) peripheral steel ring. (Adapted from Trunin, 1998.)

Figure 2 shows a notional VISAR velocity profile of the shocked material as a function of
time. During loading, this material passes through elastic and plastic states prior to reaching peak
velocity, at which it remains for the duration of the pulse. A material experiencing stress behaves
elastically if it returns to its initial shape upon cessation of loading, and plastically if the loading is
strong enough to cause permanent deformation of the material. Phase transistions in the material
during the plastic phase are indicated by boundaries in the velocity profile where the slope of the
free surface velocity changes abruptly. Unloading occurs elastically and then plastically, and wave
interactions in the material can lead to fracturing (spalling).
The analysis of this paper makes use of a single experimental dataset containing the VISAR

free surface velocity profile from a tantalum flyer plate experiment. Tantalum is used as a surrogate
for hazardous fissile materials. An absolute time scale is not available for these data, so they were
uniformly shifted in time by an amount that forced the time at which half the maximum free
surface velocity is observed prior to reaching peak velocity to match the corresponding time from a
simulation run conducted with nominal values for all input parameters. The analysis objectives are
to explore the sensitivity of the simulated velocity profiles to the unknown model parameters, and
to calibrate these model parameters to observed flyer plate data, utilizing the general statistical
approach for computer model calibration of Kennedy and O’Hagan (2001). The statistical methods
of relevance to analysis of the flyer plate data are outlined in Section 2.2. The simulations are carried
out using code developed for the Shavano project at the Los Alamos National Laboratory.
Currently substantial statistical research is focusing on the development of methodology for uti-

lizing detailed simulator codes to carry out inference. Issues such as sensitivity analysis, calibration



Figure 2: Generic velocity profile of condensed material subjected to shock loading. (Adapted from Meyers,
1994.)

of simulator input parameters, generation of predictions, and characterization of prediction uncer-
tainty are of particular interest. Simulation of well-understood physical processes is typically based
on fundamental physical principles. In such problems, the actual amount of observed field data
from this process is usually very limited. It is the simulator code that contains the structure of the
actual process it is modeling. Because of this, useful inference is possible even with only minimal
amounts of observed data on the actual physical system. In contrast, data mining is the opposite
extreme – massive amounts of data are used to inform about unknown, and often unconsidered,
structure.
To date, much of the statistical methodology relevant to the analysis of computer simulations

can be roughly broken into the following nonexclusive categories: experimental design; interpolation
or emulation; uncertainty and sensitivity analysis; calibration; and prediction.

2 Statistical Methods

In this section we give an overview of the methods used for statistical analysis of the flyer plate
data. These include the experimental design used to determine an initial collection of input settings
at which to run the simulator as well as statistical model formulation, which allows for estimation
of unknown calibration parameters and includes a Gaussian process-based emulator which models
the simulator output at untried settings. As a byproduct of this formulation, the emulator model
can be querried to give a variety of sensitivity measures to describe how changing input settings
affect the simulation output.

2.1 Computer Experiment Design

To begin the analysis, a simulation campaign consisting of a sequence of computer model runs
is required. We require a design that leads to accurate emulator-based predictions over a pre-
specified range of input settings. A large number of empirical studies have lead us to favor variants
of orthogonal array-based latin hypercube (OA-based LH) designs. Such designs are similar to the
space-filling latin hypercubes calculated by the software package Algorithms for the Construction



of Experimental Designs (Welch, 1985) and are a slight extension of the OA-based LH designs given
in Tang (1993) and Owen (1994).
We take η(x, t) to denote simulator output given input vector (x, t), where the p-vector x

holds observable, and often controllable, inputs and the q-vector t holds additional unobservable
calibration and tuning parameters which are required to run the code. When the simulator output
is multivariate, we use a component of x to index the output so that η(x, t) may be treated as
univariate. An example of this partitioning of the simulator inputs (x, t) is given in the flyer
plate experiment where x is time, t is a collection of uncertain parameters in models describing
fundamental properties of the target material, and η(x, t) is the free surface velocity of the target
material at time x for material properties t.
Given an initial range for each input setting, which we standardize to [0,1] for each input, the

experimental design effort determines a set of m input settings (x∗1, t
∗
1), . . . , (x

∗
m, t

∗
m) over the p+ q-

dimensional hypercube at which to run the simulator. The resulting output η(x∗j , t
∗
j ), j = 1, . . . ,m,

is then used for carrying out the statistical analysis, which includes a Gaussian process (GP)
model for the simulator η(x, t) at untried input settings. This GP representation of the simulator
response can also be used to explore sensitivities to input variations as is shown in the flyer plate
analysis of Section 3. Note that additional constraints on the input settings may lead to additional
complications to consider in design specification.
As an example, 2-d projections of a 16 run orthogonal array (OA) design are shown in the lower

triangle of Figure 3. This design is over 3 factors, with each factor having 4 levels. The design in
Figure 3 has strength 2. This means that for any two inputs every factor level combination occurs
an equal number of times. For the 16 run OA, there are precisely 16 values associated with any
2 of the 3 inputs. In terms of an analysis of variance model, effects associated with 4 levels for
all 3 inputs would be estimable but interaction effects would not be resolvable. However, if the
response is dominated by a subset of the inputs, say only 2, then this strength 2 array would allow
estimation of an up to third degree polynomial response surface model. Generally, a strength 3 or
higher OA is required to obtain interaction information if many inputs are active. Higher strength
of an OA design also assures that the m design points inherit better space filling properties in
higher dimensional projections which is important for fitting a GP model to the simulation output.

Although the OA designs give good coverage in higher dimensions, the one-dimensional projec-
tions are quite discrete with only 4 values occurring for each input. On the other hand, LH designs
give one-dimensional projections which are a sample of m values, in this example m = 16 values on
each input, but a LH design is effectively a stength 1 OA. Strict OA designs with very discretized
input levels can lead to inefficency when fitting a response surface to a simulator whose response is
dominated by a small number of input factors. Linkletter et al. (2003) show that by spreading out
an OA design so that it becomes a Latin hypercube sample (LHS), the prediction error in response
surface models can go down substantially. This LH modification of 2-level OA designs is introduced
in Tang (1993) and Owen (1994) and is straightforward to carry out for designs with factors having
2 or more levels. There are catalogues of, and many algorithms for generating, 2-level orthogonal
arrays with good properties. Tang (1993) and Owen (1994) argue that an OA-based construction
of a LH design results in a LHS with good space-filling properties and smaller correlation between
inputs. LH designs constructed in this way have better maximin distance than a random LHS and
guaranteed good binning properties with the underlying OA skeleton. The binning induced by the
orthogonal array skeleton is useful for sensitivity studies. Figure 3 shows a LHS construction from
the previously mentioned 16 run OA design. Note that this OA-based LH design maintains the
same 2-d binning properties of the original OA design. The simulation campaign for the flyer plate



analysis was based on a LH design constructed from an OA of strength 3 having 128 runs and two
levels per factor.
From an OA-based LH design, sensitivity analysis can be conducted essentially as suggested in

Moore and McKay (2002), comparing R2 values evaluated from the OA skeleton structure under-
lying the OA-based LH design or, equivalently, by binning values of the inputs. However, there is
added variability in calculations and, thereby, inefficiency in comparing R2 values based on binned
values of inputs specified in a LH design. Modification of OA designs so that they are LH designs is
preferred for fitting the simulator output with GP models (see Higdon et al. (2004), for example).
In cases where a nonparametric sensitivity analysis is the main goal, such as the R2 analysis of
McKay (1995), methods will perform better utilizing an OA design. OA-based LH designs are
used to obtain an experiment design with some potential to conduct both analyses, sensitivity
and prediction, desired in the simulation studies undertaken here. Another option for conducting
sensitivity analysis in the context of a calibration and prediction study is to generate samples of
the response surface on a standard OA design and calculate R2 values from each sample–this is
done for the flyer plate analysis of this paper. The result is predicted R2 indices with associated
uncertainty estimates.
Orthogonal arrays for many (> 10) factors with more than 2- or 3-levels can dictate more

runs than are acceptable, and, as the move to OA-based LH designs indicates, often more than
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Figure 3: Lower triangle of plots: 2-dimensional projections of a m = 16 point orthogonal array design.
Upper triangle of plots: An OA-based LH design obtained by spreading out the OA design so that each
1-dimensional projection gives an equally spaced set of points along [0,1].



2- or 3-level factors are desired, even for sensitivity analysis. Strategies for dealing with run size
limitations compromise adherence to strict orthogonality. The two main strategies we consider are
near orthogonal arrays (Xu (2002)) and combined orthogonal arrays, an idea presented in Moore et
al. (2004). With an alternative design relaxing strict orthogonality, again LHS construction from
these designs as skeletons, as with OA-based LH designs, is possible. Additional design references
related to this section are included in Santner et al. (2003).

2.2 Statistical model formulation for calibration and prediction

At various settings for xi, n observations yi are made of the physical system

y(xi) = ζ(xi) + ε(xi), i = 1, . . . , n ,

where ζ(xi) denotes the response of the actual physical system and the ε(xi)’s denote observation
error. In a flyer plate experiment, ζ(·) represents the actual, unobserved free surface velocity of the
target material as a function of time, and y(xi) is the observed velocity at time xi. Often the size
and nature of the ε(xi)’s are sufficiently well characterized that their distribution can be treated
as known. We take y = (y(x1), . . . , y(xn))

T to denote the physical observations. Often highly
multivariate observations are taken from the system; in this case certain components of each xi can
index the multivariate, observed data so that each y(xi) is still univariate. These observed data are
then modeled statistically using the simulator η(x, θ) at the best calibration value θ according to

y(xi) = η(xi, θ) + δ(xi) + ε(xi), i = 1, . . . , n ,

where the stochastic term δ(xi) accounts for discrepancy between the simulator η(xi, θ) and reality
ζ(xi), and θ denotes the best, but unknown, setting for the calibration inputs t. In the context
of flyer plate simulations, η(xi, θ) represents the calculated free surface velocity of the target ma-
terial at time xi, when the uncertain target material properties have values θ. In some cases, the
discrepancy term can be ignored; in other cases it plays a crucial role in the analysis.
We treat the fixed set of m simulation runs

η(x∗j , t
∗
j ), j = 1, . . . ,m ,

as data to be used in the analysis. We are in the situation where the computational demands of
the simulation code are so large that only a fairly limited number of runs can be carried out. In
this case, a GP model for η(x, t) is required for input combinations (x, t) for which the simulator
has not been run. Note that we use t to denote an input setting for the calibration parameters
here. We reserve θ to denote the “best” value of the calibration parameters, which is a quantity
about which we wish to infer.
If x is a vector in Rp and t a vector in Rq, then the function η(·, ·) maps Rp+q to R. We utilize

a Gaussian process to model this unknown function (O’Hagan, 1978; Sacks et al., 1989; Santner
et al., 2003). A mean function µ(x, t) and covariance function Cov((x, t), (x′, t′)) are required to
fully specify a GP prior model for η(x, t). Following Sacks et al. (1989) and Kennedy and O’Hagan
(2001) we scale all inputs to the unit hypercube, take µ(x, t) to be a constant and specify a product
covariance having power exponential form

Cov((x, t), (x′, t′)) =
1

λη

p∏

k=1

(ρηk)
|2(xk−x

′
k)|αη ×

q∏

k=1

(ρηp+k)
|2(tk−t

′
k)|αη , ρηk = exp(−β

η
k/4) , (1)

where the parameter λη controls the reciprocal of the marginal variance of η(·, ·), the (p+ q)-vector
ρη controls the dependence strength in each of the component directions of x and t, and αη controls



the smoothness of η(·, ·). A value of αη = 2 leads to a smooth, infinitely differentiable representation
for η(·, ·), while taking smaller values of αη give rougher representations. Our experience has been
that the simulator output η(x∗j , t

∗
j ), j = 1, . . . ,m, does not typically give much information about

αη. Hence we usually fix αη based on prior information regarding η(·, ·) or based on computational
considerations. For αη = 2, ρ

η
k is the correlation between outputs evaluated at inputs that vary in

only the k-th dimension by half their domain. We note that it is often useful to add a small white
noise component to the covariance model (1) to account for small numerical fluctuations in the
simulation. Such fluctuations can by caused by slight changes in adaptive meshing or tolerances
caused by changes in the input settings. For models with random outputs, such as epidemiological
or agent based models, an additional independent error term will be required in (1) above.
The prior model specification is completed by specifying independent priors for the parameters

controlling η(·, ·):

π(µ) ∝ exp{−
1

2v
µ2}

π(λη) ∝ λ
aη−1
η exp{−bηλη}, λη > 0

π(ρη) ∝

p+q∏

k=1

(1− ρηk)
−.9, 0 ≤ ρηk ≤ 1.

Because of the standardization, we can simplify the parameterization and MCMC by fixing µ at
0 (i.e., v = 0) and encouraging λη to be close to 1 by taking aη = bη = 5. The prior for ρη

encourages strong dependence in each of the component directions so that prior realizations for
η(·, ·) are generally quite flat. Hence it will be the data that move the ρηk’s away from 1 in the
posterior.
We specify a GP model for the discrepancy term δ(x) with mean function of 0, and a covariance

function of the form

Cov(x, x′) =
1

λδ

p∏

k=1

(ρδk)
|2(xk−x

′
k)|αδ , ρδk = exp(−β

δ
k/4) . (2)

The prior specification for the parameters governing the GP model for δ(·) mirrors the specification
for η(·, ·),

π(λδ) ∝ λaδ−1
δ exp{−bδλδ}, λδ > 0

π(ρδ) ∝

p∏

k=1

(1− ρδk)
−.7, 0 ≤ ρδk ≤ 1.

Here .7 in the prior for ρδ gives δ(·) a slightly weaker tendency towards flatness than η(·, ·).
We define y = (y(x1), . . . , y(xn))

T to be the vector of field observations and η = (η(x∗1, t
∗
1), . . . ,

η(x∗m, t
∗
m))

T to be the simulation outcomes from the experimental design. Now we define the joint
(n +m)-vector D = (yT , ηT )T which has associated simulation input values (x1, θ), . . . , (xn, θ) for
its first n components and (x∗1, t

∗
1), . . . , (x

∗
m, t

∗
m) for its final m components. The sampling model,

or likelihood, for the observed data D is then

L(D|θ, µ, λη, ρ
η, λδ, ρ

δ,Σy) ∝ |ΣD|
− 1

2 exp

{
−
1

2
(D − µ1n+m)

TΣ−1
D (D − µ1n+m)

}
, (3)

where 1n+m is the (n+m)-vector of ones and

ΣD = Ση +

(
Σy +Σδ 0
0 0

)
,



where Σy is the n× n observation covariance matrix, elements of Ση are obtained by applying (1)
to each pair of the n +m simulation input points corresponding to D, and Σδ is a n × n matrix
obtained by applying (2) to each pair of the n input settings xi, i = 1, . . . , n, that correspond
to the observed field data y. Note that Ση depends on the experimental input conditions xi, the
simulator input conditions (x∗j , t

∗
j ), and the parameter value θ. Hence updating θ affects Ση which

means its determinant and a linear solve need to be recomputed to evaluate (3).
The resulting posterior density has the form

π(θ, µ, λη, ρ
η, λδ, ρ

δ|D) ∝ (4)

L(D|θ, µ, λη, ρ
η, λδ, ρ

δ,Σy)× π(µ)× π(λη)× π(ρη)× π(λδ)× π(ρδ)

which can be explored via Markov chain Monte Carlo (MCMC) or some other numerical integration
scheme. We use tuned, univariate random walk metropolis updates in our MCMC implementation
(Metropolis et al., 1953). Figure 4 shows the results from a simple example consisting of a one-
dimensional x and t, using m = 20 simulations and n = 5 experimental observations.
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Figure 4: Basic model formulation. (a) An initial set of simulation runs are carried out over the input
settings (x∗j , t

∗
j ), j = 1, . . . ,m. (b) Experimental data are collected at n input settings; data are given by

the black dots; 90% uncertainties are given by the black lines. The green circles correspond to the m
simulation runs. (c) Posterior mean estimate for the simulator output η(x, t). (d) Posterior distribution for
the calibration parameter θ and the resulting simulator-based predictions (blue lines). (e) Posterior mean
estimate and pointwise 90% prediction intervals for the model discrepancy term δ(x). (f) Posterior mean
estimate and pointwise 90% prediction intervals for the physical system ζ(x).



2.3 Computer Model Emulation and Sensitivity Analysis

Given the MCMC output of parameters governing the various GP models, posterior realizations of
η(x, t) can be generated using standard theory. As an example, we consider modeling the output
of the 3-d function

η(x) = (x1 + 1) cos(πx2) + 0x3.

Although η(x) takes in a 3-dimensional input x, the third factor does not affect the output. The
estimated emulator can account for this by estimating a value for ρη3 which is close to 1. We
evaluate η(x) according to the n = 16 run OA-based LH design from Figure 3. The computed
values η(x∗i ) along with the posterior mean for η(x) are shown in Figure 5 as a function of x1

and x2. The resulting posterior medians for (ρ
η
1, ρ

η
2, ρ

η
3) are (.95, .68, .999). Hence, the resulting
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Figure 5: Left: simulator output for the η(x) = (x1 + 1) cos(πx2) + 0x3 as a function of x1 and x2. Right:
posterior mean for η(x) as a function of x1 and x2. The estimated emulator correctly does not depend on
x3.

emulator is effectively independent of x3. The posterior mean estimate for η(x) is shown as a
function of (x1, x2) in the right frame of Figure 5. This analysis also gives uncertainties regarding
this emulator.
The posterior distribution of ρη is one measure of simulator output sensitivity to inputs. More

generally, sensitivity analysis studies how variation in simulator response can be apportioned to the
various code inputs. Formal sensitivity analyses can be carried out in a variety of ways. Empirical
or sampling based approaches are discussed in Saltelli et al. (2000); model based approaches which
first build an emulator and carry out sensitivity analyses on this emulator are discussed in Welch
et al. (1992) and, from a Bayesian perspective, in Oakley and O’Hagan (2004).
One approach we have been using is the empirical R2 measure of McKay (1995). This measure

is one of a host of measures based on sensitivity indices which make use of an ANOVA-type
decomposition (Sobol’, 1993) of the simulator η(x). For simplicity we assume η(x) is defined over
x ∈ [0, 1]p.
Sobol’ (1993) shows that there is a unique decomposition

η(x1, . . . , xp) = η0 +

p∑

k=1

ηk(xk) +
∑

1≤k<`≤p

ηk`(xk, x`) + · · ·+ η1,2,...,p(x1, x2, . . . , xp), (5)



for which

η0 =

∫

[0,1]p
η(x1, . . . , xp) dx1 · · · dxp and

∫ 1

0
ηk1,...,ks(xk1

, . . . , xks) dxki = 0

for any 1 ≤ i ≤ s and has orthogonal components.
So, for example, the main effect for factor k of the simulator is given by

ηk(xk) =

∫

[0,1]p−1

η(x) dx−k − η0

where x−k denotes all input factors except k. The three main effects estimated from the emulator
in our simple 3-d example are given by the lines in Figure 6. The two-factor interaction effect for
factors j and k of the simulator is given by

ηjk(xj , xk) =

∫

[0,1]p−2

η(x) dx(−j,−k) − ηj(xj)− ηk(xk)− η0

where x(−j,−k) denotes all input factors except j and k.
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Figure 6: 1-d marginalizations of the posterior mean fit shown in Figure 5. The main effect functions ηi(xi)
are given by the green lines and the 16 calculations are given by the blue circles. Here factor 2 is clearly
important giving an S2 = .98. The Sk for factors 1 and 3 is 0.

The R2 measure of McKay (1995) is a variance-based measure of sensitivity which complements
these plot diagnostics. Before getting to R2, we first describe a family of variance-based measures
of η(x). The total variance V of η(x) is defined to be

V =

∫

[0,1]p
η2(x)dx− η2

0.

Partial variances are computed from each of the terms of Sobol’s decomposition (5) as

Vk1,...,ks =

∫

[0,1]s
η2
k1,...,ks

(xk1
, . . . , xks) dxk1

· · · dxks

for s = 1, . . . , p and 1 ≤ k1 < · · · < ks ≤ p. If both sides of (5) are squared and integrated over
[0, 1]p, one obtains

V =

p∑

k=1

Vk +
∑

1≤k<`≤p

Vk` + · · ·+ V1,2,...,p

due to the orthogonality of the terms in (5). Sensitivity measures Sk1,...,ks are given by

Sk1,...,ks =
Vk1,...,ks

V
.



The R2 sensitivity index applied to the factor group {k1, . . . , ks} measures its combined effect on
the output,

R2
k1,...,ks

=
Var[E(η(x) |xk1

, . . . , xks)]

V
=

s∑

i=1

∑

ω⊂{k1,...,ks};
|ω|=i

Sω .

For the simple 3-d example, the theoretical values of the sensitivity indices are S2 = 27/28
and S12 = 1/28, with all others equal to zero. The quantities Sk, k = 1, . . . , p, are the first order
sensitivities (main effects). The theoretical values of R2 are R2

2 = 27/28, R
2
12 = 1, R

2
23 = 27/28,

and R2
123 = 1. (S1, S2, S3) and (R

2
1, R

2
2, R

2
3) are estimated from the emulator to be (0, .98, 0). Note

here that if one were only to look at the first order sensitivities, factor 1 would not be chosen as
important. From Figure 5 it is clear that input x1 does affect η(x). Higher order sensitivities do
show input 1 to be active as a second order interaction with input 2 (estimated S12 = .02). In the
special case that [0, 1]p is discretized to a grid with discrete uniform measure, the partial variances
become the sums of squares and the sensitivity measures become the R2 values of a standard
ANOVA decomposition. For sufficiently high-dimensional inputs, calculations of sensitivity indices
on the entire grid become infeasible due to the complexity of the calculations involved, in terms of
the number of simulations required or the order of the linear solve required to generate realizations
from the emulator. A subset of grid points is used in place of the entire grid. However, it is now
impossible to obtain uncorrelated estimates of all sensitivity indices, but a properly chosen design
can allow the lower order effects to be estimated cleanly if it is assumed that higher order effects
are negligible. Orthogonal array designs are often used for this purpose.
Designs having at least three levels per variable are desirable, allowing quadratic main effects to

be estimated. Main effects will be confounded with three-factor or higher interactions in strength
3 OA designs, and with four-factor or higher interactions in strength 4 OA designs, while two-
factor interactions will be confounded with other two-factor or higher interactions in strength 3
OA designs and with three-factor or higher interactions in strength 4 OA designs. Strength 2 OA
designs are not desirable as some main effects will be confounded with two-factor interactions. In
short, if three-factor or higher interactions are assumed negligible, a strength 3 OA design will
allow main effects to be estimated cleanly and a strength 4 OA design will allow main effects and
all two-factor interaction effects to be estimated cleanly.
The main effect and two-factor interaction effect sensitivity indices and functions can be esti-

mated using an emulator of the response surface constructed from posterior realizations generated
on a sequence of runs specified by an appropriate OA(N , s1s2 · · · sp, t) design, where N denotes
the number of runs in the design, p the number of input parameters, sk the number of levels for
input k, and t the strength of the array:

1. Generate a draw η? given the data and a posterior realization of the parameters (θ, µ, λη, ρ
η,

λδ, ρ
δ) from (4) at untried input settings x?i taken from the OA design.

2. Let η?−k(xk,i) denote the average of the η
? having the k-th input set to xk,i (i = 1, . . . , sk and

k = 1, . . . , p), and η? denote the overall mean. Estimate the main effect of input k at xk,i by

η̂k(xk,i) = η?−k(xk,i)− η? .

3. Estimate Sk for each input factor k by

Ŝk =

N
sk

∑sk
i=1 η̂k(xk,i)

2

∑N
i=1(η

?(x?i )− η?)2
.



4. Let η?−j,−k(xj,h, xk,i) denote the average of the η
? having the j-th input set to xj,h and the

k-th input set to xk,i (h = 1, . . . , sj , i = 1, . . . , sk, k = j + 1, . . . , p and j = 1, . . . , p − 1).
Estimate the two-factor interaction effect of inputs j and k at (xj,h, xk,i) by

η̂j,k(xj,h, xk,i) = η?−j,−k(xj,h, xk,i)− η̂j(xj,h)− η̂k(xk,i)− η? .

5. Estimate Sjk for each pair of inputs j and k by

Ŝjk =

N
sjsk

∑sj
h=1

∑sk
i=1 η̂j,k(xj,h, xk,i)

2

∑N
i=1(η

?(x?i )− η?)2
.

6. Repeat the previous steps for multiple posterior realizations. The result is a sample from
the posterior predictive distributions of the sensitivity indices, and of the main effect and
two-factor interaction functions on a grid of input values defined by the OA.

Posterior means and quantiles are easily derived from these samples and constitute point esti-
mates of and probability bounds on these indices, and pointwise estimates/bounds on the functions
restricted to the grid of inputs from the OA.

3 Analysis of a Flyer Plate Experiment

In this analysis of a flyer plate experiment, ten paramaters are calibrated to experimental data.
The results of this calibration can be used to restrict variation in these parameters for downstream
integrated calculations that involve potentially many other uncertain parameters that may be
independently calibrated using a similar approach. The free surface velocity is a function of both
equation of state (EOS) and material strength. One calibration parameter specifies deviations
from the nominal tantalum EOS table. Material strength is incorporated through the Preston-
Tonks-Wallace (PTW) model (Preston, Tonks and Wallace, 2003). Seven PTW model parameters
that describe the plastic stress–strain relationship are calibrated. A parameter specifying the spall
strength of tantalum in the damage model is calibrated. Finally, the flyer plate impact velocity is
calibrated due to deficiencies in the mechanism used to measure this velocity in the experiment.
For this simulation study, the allowed domain of variability for the seven free PTW parameters is

described by the boundaries of a minimum volume, hyper–rectangular probability region (covering
as much probability as possible up to the target of 95%) based on the joint posterior distribution of
these parameters, determined by fitting the PTW model simultaneously to several Hopkinson bar
and quasi-static stress–strain datasets under a variety of strain rate and temperature conditions
(Fugate et al., 2005; Hanson, 2004). Table 1 summarizes the ten calibration parameters and their
domains for this analysis.
The simulator was run at 128 unique combinations of the ten calibration parameters as specified

by an OA-based LH design generated from a two-level, strength 3 OA design (Tang, 1993). The
design values for ε were binned to the eleven integer values in the range [−5, 5]. The left panel of
Figure 7 shows the resulting free surface velocity profiles in gray, with the experimental velocity
profile in blue and the mean of the calculations in red. The right panel of Figure 7 shows more detail,
with the mean of the calculations subtracted out of each simulated profile and the experimental
data. The dashed vertical segments at the bottom of the right panel indicate one hundred locations
along the time axis at which calculations and data were extracted for this statistical analysis.
The single physical parameter x in this analysis is time, and the ten calibration parameters θ

are described in Table 1. The calculations η(x, t) are taken at the locations (x1, t1),. . . ,(x100, t1),



Input Description Domain
Min Max

ε Perturbation of EOS table from nominal -5% 5%

θ0 Initial strain hardening rate 2.78× 10−5 0.0336

Material constant in thermal activation
κ energy term — relates to the temperature dependence 0.438 1.11

Material constant in thermal activation
γ energy term — relates to the strain rate dependence 6.96× 10−8 6.76× 10−4

y0 Maximum yield stress (at 0 K) 0.00686 0.0126

y∞ Minimum yield stress (∼ melting) 7.17× 10−4 0.00192

s0 Maximum saturation stress (at 0 K) 0.0126 0.0564

s∞ Minimum saturation stress (∼ melting) 0.00192 0.00616

pspall Spall strength -0.055 -0.045

vs Flyer plate impact velocity 329.5 338.5

Table 1: Calibration parameters with input domains.

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

time

ve
lo

ci
ty

128 calculated curves
calculation mean
experimental data

1.0 1.2 1.4 1.6 1.8 2.0 2.2

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

time

ve
lo

ci
ty

 −
 c

al
cu

la
tio

n 
m

ea
n

128 calculated curves
experimental data

Figure 7: Free surface velocity profiles in gray, with the experimental velocity profile in blue and the mean
of the calculations in red (left panel). Mean of the calculations subtracted out of each simulated profile and
the experimental data (right panel).

. . . ,(x1, t128),. . . ,(x100, t128), and the experimental data y(x) are taken at the locations x1,. . . ,x100.
The calculations and experimental data are standardized by subtracting out the mean of the cal-
culations at each x location, and dividing these residuals by the overall standard deviation of the
calculations. The statistical analysis takes advantage of Kronecker product structure in the covari-
ance matrices to make likelihood calculations tractable; without this structure, the analysis would
be limited to a more restrictive extraction of calculations and experimental data. Table 2 gives the
prior distributions on all of the parameters involved in the statistical model.
The Gaussian process model for η(x, t) includes a nugget effect with precision having prior



Parameters Description Prior Distribution

Calibration parameters Uniform on hyper–rectangle
θ defined in Table 1 defined by domains in Table 1

Coefficient in simulator
ρη covariance model (1) Beta(1, 0.1)

Coefficient in discrepancy
ρδ covariance model (2) Beta(1, 0.3)

λη Simulator precision Gamma(5, 5)

λδ Discrepancy precision Gamma(1, 0.0001)

λy Measurement precision fixed at 1

Table 2: Prior distributions on statistical model parameters.

distribution Gamma(1, 0.0001). The measurement error variance at location xi is assumed to be
C2
i /λy, where Ci = 0.05371 is the standard deviation of the empirical free surface velocities in the
relatively constant peak velocity portion of the profile prior to unloading. The prior distribution
for λy is fixed at 1, so that the measurement error standard deviation takes the value Ci at location
xi. The Markov chain was run for 10,000 iterations, after discarding the first 2,100 samples. Figure
8 shows histograms of the retained posterior samples for the calibration parameters θ0 and y0, with
the assumed uniform prior indicated by the straight line segment. The posterior distributions of
these parameters shows a distinct gain in information on the plausible range and concentration of
values useful for calibrating this simulator to the experimental data. In fact, the parameters ε, κ,
γ, pspall and vs calibrate strongly to the lower end of their ranges, while y0, y∞ and s0 calibrate to
the higher end of their ranges. The parameters θ0 and s∞ calibrate to the extremes of their ranges,
with this effect most pronounced for θ0.
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Figure 8: Histograms of the retained posterior samples for the calibration parameters θ0 and y0. The
assumed uniform prior is indicated by the straight line segment.

Figure 9 shows 90% pointwise probability intervals for the stress-strain relationship calculated



from the PTW model based on samples from the prior and posterior distributions of the 7 PTW
parameters of Table 1. The main implication of this figure is the tantalum sample used in this flyer
plate experiment is slightly less compressible than the tantalum samples used in the Hopkinson bar
and quasi-static experiments. Although the posterior distribution excludes the higher compress-
ibility regions admitted by the prior, there is considerable overlap in the stress-strain relationship
allowed by these distributions. Calibration to multiple flyer plate experiments conducted under a
variety of environments is required to reach conclusions robust to non-physical sources of bias or
variation.
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Figure 9: Pointwise 90% stress-strain curves calculated from the PTW model based on prior (green) and
posterior (blue) samples of the 7 PTW parameters. The pointwise median curves are given by the solid lines.

Figure 10 shows kernel density estimates of the bivariate posterior distributions of the ten
calibration parameters. The importance of essentially every parameter (with the exception of s∞)
to the calibration is indicated by a concentration of probability on a subset of their domains.
Bivariate relationships between calibration parameters can be discerned from this figure. In this
example, there is strong negative correlation between ε and θ0 (−0.89) and moderate correlations
between several other parameter pairs: y0 and θ0 (−0.43), ε and y0 (0.38), ε and vs (−0.3), and y0

and s∞ (0.28). The bimodal nature of the posterior distribution for θ0 (and to a lesser extent, s∞)
is due in part to these correlation relationships between parameters. For example, increasing ε or
θ0 increases the stiffness of the target material. These parameters are able to trade-off against each
other to achieve similar velocity profiles. Additional sources of information beyond the single flyer
plate experiment available for this analysis are necessary to restrict the feasible trade-off spaces
among these parameters.
Figure 11 shows a posterior prediction of the experimental data based solely on the calibrated

simulator ηc(x), i.e. without the discrepancy adjustment δ(x). Specifically η(x, θ), given all of
the observed data D and θ, is a Gaussian process. Let ξ = (θ, λη, ρ

η, λδ, ρ
δ, λy). Given posterior

samples ξ1,. . . ,ξN , the distribution of the calibrated simulator at x is estimated to be

π(ηc(x) | D) =

∫
π(η(x, θ) | D, ξ)π(ξ|D) dξ ≈

1

N

N∑

i=1

π(η(x, θi) | D, ξi) .

The solid red line is the median of π(ηc(x) | D), and the lower and upper dashed red lines are the
5% and 95% quantiles. Note the reduction in the uncertainty of this posterior prediction relative
to prior uncertainty represented by variability in the gray traces corresponding to calculations on
the uniform space–filling experimental design.
In the right panel of Figure 11, note the presence of substantial discrepancy between the cali-

brated simulator and the data prior to, and following, the peak velocity portion of the profile prior
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Figure 10: Kernel density estimates of the bivariate posterior distributions of the ten calibration parameters.
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Figure 11: Posterior prediction of the experimental data based solely on the calibrated simulator ηc(x).



to unloading, particularly in the vicinity of the Hugoniot elastic limit (HEL) at x = 0.95. Figure
12 shows a posterior prediction of the experimental data based on the calibrated simulator ηc(x)
adjusted for discrepancy δ(x). Specifically, this prediction is based on the posterior distribution of
ζ(x),

π(ζ(x) | D) =

∫
π([η(x, θ) + δ(x)] | D, ξ)π(ξ | D) dξ ≈

1

N

N∑

i=1

π([η(x, θi) + δ(x)] | D, ξi) .

This correction improves the prediction quality along most of the velocity curve, but lack of fit
remains in the vicinity of the HEL, where discrepancy between the data and simulation model
is particularly abrupt and pronounced. The inability to adjust for deviations of this nature is a
consequence of the fact that discrepancy is modeled as a stationary Gaussian process, which can
only correct smooth deviations of the calibrated simulator from the experimental data.
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Figure 12: Posterior prediction of the experimental data based on the calibrated simulator ηc(x) adjusted
for discrepancy δ(x).

Figure 13 shows results from two sensitivity analyses conducted on the flyer plate simulation
output. The goal of these analyses is to provide some information about which input parameters are
most influential in explaining output variability. The first order sensitivity indices of Section 2.3 de-
fine the metric applied to assess input importance. Each index corresponds to an input parameter,
estimating the proportion of total variation in the output explained by variation in that param-
eter. The first analysis used outputs extracted from the simulation runs at times corresponding
to two important features in the experimental data: the HEL and the damage point. The second
analysis was based on a principal components decomposition of the mean-centered simulation runs
as described in McKay et al. (2005). The outputs were the three sets of coefficients corresponding
to the first three empirical orthogonal basis functions. This type of analysis is useful when each
basis function has a physical interpretation. In this event, the partitioning of total variability in
the coefficients of a particular basis function into components explained by the input main effects
provides information about the degree to which each input influences the physical characteristics
described by that basis function.
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Figure 13: First order sensitivity indices for each of the ten calibration parameters. Outputs are simulated
free surface velocities extracted at the HEL and damage points in the experimental data (left panel), and
coefficients of the first three principal components calculated from the mean-centered simulation runs (right
panel).

In Figure 13, the ten calibration inputs are listed on the y-axis and the outputs are listed on the
x-axis of each plot. The ordering of the inputs is based on their degree of importance as defined by
the mean of their main effect indices across the outputs, with more influential inputs situated lower
on the y-axis. The ordering of the outputs is based on the degree to which they can be explained by
main effects, with outputs having higher proportion of total variation due to main effects situated
to the left on the x-axis. The parameter ε specifying deviations from the nominal EOS table is the
most influential input in both analyses, followed by the PTW parameter κ. The PTW parameter γ
and the damage model parameter pspall are also influential in both analyses. The EOS perturbation
ε is the only important input that contributes significantly to explaining total variability in every
output analyzed. Figure 14 shows 90% probability intervals for the predictive distributions of the
main effect sensitivity indices corresponding to the three sets of principal component coefficients.
The point estimates of these indices are given in the right panel of Figure 13.
The first principal component explains 80.56% of the total dispersion in the mean-centered

simulation runs. The left panel of Figure 15 shows the first component primarily affects the times
at which initial loading (rise to peak velocity), initial unloading (release) and pull-back occur. This
timing is determined by the speed of the shock wave traveling through the material, which is a
function of the tantalum EOS and material strength. The right panel of Figure 15 shows the EOS
perturbation ε drives first order variation in the sign of the coefficient of this component, while the
other parameters have negligible first order effects. As ε traverses its range from negative values to
positive, this coefficient linearly decreases from positive to negative values, changing sign at ε = 0.
This behavior translates to initial loading, unloading and damage occurring earlier as ε increases,
which is consistent with the fact that the sound speed is an increasing function of ε. The main
effect functions for all inputs are estimated using the algorithm of Section 2.3, based on a 625-run,
five-level, strength 3 orthogonal array.
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provide 95% probability regions for the main effect of ε at the five input values it was estimated.

The second principal component picks up an additional 9.58% of the total dispersion in the
mean-centered simulation runs. The left panel of Figure 16 shows the second component makes
adjustments to the free surface velocities across the entire velocity profile. This behavior is de-
termined primarily by material strength. Elastic waves travel faster in stiffer materials, resulting
in higher free surface velocities at times in the vicinity of the HEL. The elastic waves reflect off
the leading edge of the target material and reduce the amplitude of the approaching plastic wave.
Greater amplitude reduction is achieved by faster elastic waves, resulting in lower free surface ve-



locities at times subsequent to the HEL. A positive coefficient on this component is consistent with
greater material strength relative to a negative coefficient. The right panel of Figure 16 shows the
main effect functions for κ, γ, vs and ε. Smaller values of κ and γ are associated with increasing
coefficient values, consistent with the fact that material strength increases as κ and γ decrease in
the PTW model.
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Figure 16: Mean of simulation runs and second principal component added with positive (+) and negative
(−) coefficients (left panel), and 1-d marginalizations of the posterior mean fit to the observed coefficients
of the second component with the most active inputs (ε, κ, γ and vs) in color and all others in grey (right
panel). Vertical bars provide 95% probability regions for the main effects of the active inputs at the five
input values they were estimated.

The third principal component picks up an additional 5.71% of the total dispersion in the
mean-centered simulation runs. This component makes adjustments to the free surface velocities
primarily in the region of the release phase near the damage point. The EOS parameter ε influences
the shape of the velocity profile in the release phase. The pspall parameter specifies an amount of
tension the tantalum can withstand before spalling; it is expressed as a negative pressure so smaller
pspall values correspond to a higher tension threshold. The difference between peak velocity and
velocity at the damage point is an increasing function of this tension threshold. The left panel of
Figure 17 shows a positive coefficient corresponds to damage occurring later at lower free surface
velocity relative to a negative coefficient. The right panel of Figure 17 shows the main effect
functions for ε and pspall. The main effect for ε first increases then decreases. The main effect
function for pspall decreases monotonically. Therefore, smaller values of pspall are associated with
damage occurring later at lower free surface velocity, consistent with a higher tension threshold.

4 Discussion

We have demonstrated a Bayesian approach for fusing model simulations and observed field data
to carry out model sensitivity, calibration and prediction on a flyer plate experiment. Uncertainties
arising from unknown calibration parameters, limited simulation runs, and discrepancy between
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Figure 17: Mean of simulation runs and third principal component added with positive (+) and negative
(−) coefficients (left panel), and 1-d marginalizations of the posterior mean fit to the observed coefficients of
the third component with the most active inputs (ε and pspall) in color and all others in grey (right panel).
Vertical bars provide 95% probability regions for the main effects of the active inputs at the five input values
they were estimated.

simulator and reality are incorporated here. Sensitivity analysis of the functional flyer plate simu-
lation output highlighted the insights gained by identifying physical interpretations of the principal
component representation. The availability of such interpretations provides the necessary context
for understanding the relative importance and behavior of the uncertain model parameters. Cali-
bration of simulation model parameters to a flyer plate experiment highlighted the extent to which
uncertain material properties can be constrained, including the identification of trade-offs among
parameters that cannot be resolved by available experimental data. The flyer plate simulation
model provides a compelling example of the need to account for uncertainty due to simulation
model inadequacies. Including a discrepancy component in the statistical model focuses the cali-
bration effort on physics in the simulation model that provides a sufficiently complete picture of
the physical processes generating the experimental data.
This work is a piece of the overall verification and validation (V&V) process for simulation

models (see Oberkampf et al. (2003), for example), however we focus on the question of whether or
not the simulation model is useful for prediction. Given our focus on prediction, the usefulness of
the simulator is apparent from the reduction in prediction uncertainty it affords when compared to
a purely field data driven analysis. Another important issue is whether or not including simulator
runs in the analysis improves our ability to extrapolate.
Reality checks are very important in analyses such as these that build much structure into

models – simulators as well as statistical models – and use comparatively small amounts of field data.
Comparing predictions to hold out data which have not been used to estimate model parameters
can be very useful. In cases for which field data is too scant for such an approach, one needs to be
more careful (see Bayarri and Berger (2000), Robbins et al. (2000) and accompanying discussion).
Also, the investigation of the sensitivity of predictions to changes in modeling assumptions can be



revealing.
This basic framework will likely have to be adjusted to deal with highly multivariate output.

We were able to describe the multivariate output of the flyer plate traces under this framework,
but to incorporate a very dense trace will require reformulating the statistical model to make the
computations tractable. Approaches based on wavelets or functional data analysis techniques seem
promising here (Higdon et al. (2005), for example).
The statistical modeling of the simulator function η(·, ·) becomes increasingly difficult as the

dimensionality of the input space increases since the limited number of runs must now cover a high
dimensional space. Adaptive design as well as dimension reduction strategies have been proposed
(Craig et al., 2001) for dealing with this issue. As an alternative, it may be wise to develop
a faster, more approximate simulator and use a strategy that avoids modeling η(·, ·). Another
promising approach is to replace the simulator altogether with a statistical model that incorporates
key features of the physical process as in Wikle et al. (2001).
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